Quasiconformal Dilatation of Projective Transformations and Discrete Conformal Maps
نویسندگان
چکیده
منابع مشابه
Quasiconformal distortion of projective transformations and discrete conformal maps
We consider the quasiconformal dilatation of projective transformations of the real projective plane. For non-affine transformations, the contour lines of dilatation form a hyperbolic pencil of circles, and these are the only circles that are mapped to circles. We apply this result to analyze the dilatation of the circumcircle preserving piecewise projective interpolation between discretely con...
متن کاملCombinatorically Prescribed Packings and Applications to Conformal and Quasiconformal Maps
The Andreev-Thurston Circle Packing Theorem is generalized to packings of convex bodies in planar simply connected domains. This turns out to be a useful tool for constructing conformal and quasiconformal mappings with interesting geometric properties. We attempt to illustrate this with a few results about uniformizations of finitely connected planar domains. For example, the following variatio...
متن کاملEvolution Dynamics of Conformal Maps with Quasiconformal Extensions
We study one-parameter curves on the universal Teichmüller space T and on the homogeneous space M = Diff S/Rot S embedded into T . As a result, we deduce evolution equations for conformal maps that admit quasiconformal extensions and, in particular, such that the associated quasidisks are bounded by smooth Jordan curves. Some applications to Hele-Shaw flows of viscous fluids are given.
متن کاملMaps into projective spaces: liquid crystal and conformal energies
Variational problems for the liquid crystal energy of mappings from three-dimensional domains into the real projective plane are studied. More generally, we study the dipole problem, the relaxed energy, and density properties concerning the conformal p-energy of mappings from n-dimensional domains that are constrained to take values into the p-dimensional real projective space, for any positive...
متن کاملOn Discrete Conformal Seamless Similarity Maps
An algorithm for the computation of global discrete conformal parametrizations with prescribed global holonomy signatures for triangle meshes was recently described in [Campen and Zorin 2017]. In this paper we provide a detailed analysis of convergence and correctness of this algorithm. We generalize and extend ideas of [Springborn et al. 2008] to show a connection of the algorithm to Newton’s ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2017
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-016-9854-7